Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Sinner, FM; Gatschelhofer, C; Mautner, A; Magnes, C; Buchmeiser, MR; Pieber, TR.
Ring-opening metathesis polymerization-derived monolithic capillary columns for high-performance liquid chromatography. Downscaling and application in medical research.
J Chromatogr A. 2008; 1191(1-2):274-281 Doi: 10.1016/j.chroma.2008.01.005
Web of Science PubMed FullText FullText_MUG Google Scholar

 

Führende Autor*innen der Med Uni Graz
Sinner Frank Michael
Co-Autor*innen der Med Uni Graz
Gatschelhofer Christina
Pieber Thomas
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
Monolithic capillary columns were prepared via ring-opening metathesis polymerization (ROMP) using norborn-2-ene (NBE) and 1, 4, 4a, 5, 8, 8a-hexahydro-1, 4, 5, 8-exo,endo-dimethanonaphthalene (DMN-H6) as monomers. The monolithic polymer was copolymerized with Grubbs-type initiator RuCl(2)(PCy(3))(2)(CHPh) and a suitable porogenic system within the confines of fused silica capillaries of different inner diameter (I.D.). The first part of the study focused on batch-to-batch reproducibility of ROMP-derived capillary monoliths. Capillary monoliths of 200 microm I.D. showed good reproducibility in terms of retention times, with relative standard deviations (RSD) of 1.9% for proteins and 2.2% for peptides. However, the separately synthesized capillary monoliths revealed pronounced variation in back pressure with RSD values of up to 31%. These variations were considerably reduced by cooling of the capillaries during polymerization. Using this optimized preparation procedure capillary monoliths of 100 and 50 microm I.D. were synthesized and the effects of scaling down the column I.D. on the morphology and on the reproducibility of the polymerization process were investigated. In the second part, the applicability of ROMP-derived capillary monoliths to a separation problem common in medical research was assessed. A 200 microm I.D. monolithic column demonstrated excellent separation behavior for insulin and various insulin analogs, showing equivalent separation performance to Vydac C4 and Zorbax C3-based stationary phases. Moreover, the high permeability of monoliths enabled chromatographic separations at higher flow rates, which shortened analysis time to about one third. For the analysis of insulin in human biofluid samples, enhanced sensitivity was achieved by using a 50 microm I.D. ROMP-derived monolith.
Find related publications in this database (using NLM MeSH Indexing)
Chromatography, High Pressure Liquid - instrumentation
Chromatography, High Pressure Liquid - methods
Insulin - isolation & purification
Mass Spectrometry - methods
Miniaturization - instrumentation
Peptides - isolation & purification

Find related publications in this database (Keywords)
monolith
metathesis polymerization
high-performance liquid chromatography (HPLC)
capillary columns
proteins
peptides
insulin
© Med Uni Graz Impressum