Gewählte Publikation:
SHR
Neuro
Krebs
Kardio
Lipid
Stoffw
Microb
Bürgermeister, M; Birner-Grünberger, R; Nebauer, R; Daum, G.
Contribution of different pathways to the supply of phosphatidylethanolamine and phosphatidylcholine to mitochondrial membranes of the yeast Saccharomyces cerevisiae.
Biochim Biophys Acta. 2004; 1686(1-2): 161-168.
Doi: 10.1016/j.bbalip.2004.09.007
Web of Science
PubMed
FullText
FullText_MUG
- Co-Autor*innen der Med Uni Graz
-
Birner-Grünberger Ruth
- Altmetrics:
- Dimensions Citations:
- Plum Analytics:
- Scite (citation analytics):
- Abstract:
- In the yeast, three biosynthetic pathways lead to the formation of phosphatidylethanolamine (PtdEtn): (i) decarboxylation of phosphatidylserine (PtdSer) by phosphatidylserine decarboxylase 1 (Psd1p) in mitochondria; (ii) decarboxylation of PtdSer by Psd2p in a Golgi/vacuolar compartment; and (iii) the CDP-ethanolamine (CDP-Etn) branch of the Kennedy pathway. The major phospholipid of the yeast, phosphatidylcholine (PtdCho), is formed either by methylation of PtdEtn or via the CDP-choline branch of the Kennedy pathway. To study the contribution of these pathways to the supply of PtdEtn and PtdCho to mitochondrial membranes, labeling experiments in vivo with [(3)H]serine and [(14)C]ethanolamine, or with [(3)H]serine and [(14)C]choline, respectively, and subsequent cell fractionation were performed with psd1Delta and psd2Delta mutants. As shown by comparison of the labeling patterns of the different strains, the major source of cellular and mitochondrial PtdEtn is Psd1p. PtdEtn formed by Psd2p or the CDP-Etn pathway, however, can be imported into mitochondria, although with moderate efficiency. In contrast to mitochondria, microsomal PtdEtn is mainly derived from the CDP-Etn pathway. PtdEtn formed by Psd2p is the preferred substrate for PtdCho synthesis. PtdCho derived from the different pathways appears to be supplied to subcellular membranes from a single PtdCho pool. Thus, the different pathways of PtdEtn biosynthesis play different roles in the assembly of PtdEtn into cellular membranes.
- Find related publications in this database (using NLM MeSH Indexing)
-
Aldehyde-Lyases - genetics
-
Carbon Radioisotopes - genetics
-
Carboxy-Lyases - deficiency
-
Cytidine Diphosphate - analogs and derivatives
-
Ethanolamine - chemistry
-
Gene Deletion - chemistry
-
Intracellular Membranes - metabolism
-
Mitochondria - metabolism
-
Phosphatidylcholines - analysis
-
Phosphatidylethanolamines - analysis
-
Saccharomyces cerevisiae - genetics
-
Serine - analogs and derivatives
-
Tritium - analogs and derivatives
- Find related publications in this database (Keywords)
-
phospholipid
-
phosphatidylserine
-
phosphatidylethanolamine
-
phosphatidylcholine
-
mitochondria
-
yeast