Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Borovic, S; Tirzitis, G; Tirzite, D; Cipak, A; Khoschsorur, GA; Waeg, G; Tatzber, F; Scukanec-Spoljar, M; Zarkovic, N.
Bioactive 1,4-dihydroisonicotinic acid derivatives prevent oxidative damage of liver cells.
EUR J PHARMACOL. 2006; 537(1-3): 12-19. Doi: 10.1016/j.ejphar.2006.03.004
Web of Science PubMed FullText FullText_MUG

 

Co-Autor*innen der Med Uni Graz
Khoschsorur Gholamali
Tatzber Franz
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
1,4-Dihydroisonicotinic acid derivatives (1,4-DHINA) are compounds closely related to derivatives of 1,4-dihydropyridine, a well-known calcium channel antagonists. 1,4-DHINA we used were derived from a well-known antioxidant Diludin. Although some compounds have neuromodulatory or antimutagenic properties, their activity mechanisms are not well known. This study was performed to obtain data on antioxidant and bioprotective activities of: 2,6-dimethyl-3,5-diethoxycarbonyl-1,4-dihydroisonicotinic acid (Ia); sodium 2-(2,6-dimethyl-3,5-diethoxycarbonyl-1,4-dihydropyridine-4-carboxamido)glutamate (Ib) and sodium 2-(2,6-dimethyl-3,5-diethoxycarbonyl-1,4-dihydropyridine-4-carboxamido)ethane-sulphate (Ic). 1,4-DHINA's activities were studied in comparison to Trolox by: N,N-Diphenyl-N'-picrylhydrazyl (DPPH*), deoxyribose degradation, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical scavenging and antioxidative capacity assays; copper-induced lipid peroxidation of cultured rat liver cells (malondialdehyde determination by high performance liquid chromatography and 4-hydroxynonenal-protein conjugates by dot-blot); (3)H-thymidine incorporation and trypan blue assay for liver cells growth and viability. In all assays used Ia was the most potent antioxidant. Ia was also a potent antioxidant at non-toxic concentrations for liver cell cultures. It completely abolished, while Ic only slightly decreased copper-induced lipid peroxidation of liver cells. Thus, antioxidant capacities are important activity principle of Ia, which was even superior to Trolox in the cell cultures used, while activity principles of Ic and Ib remain yet to be determined.
Find related publications in this database (using NLM MeSH Indexing)
Animals -
Antioxidants - pharmacology
Cell Survival - drug effects
Cells, Cultured -
Copper - pharmacology
Female -
Isonicotinic Acids - pharmacology
Lipid Peroxidation - drug effects
Liver - drug effects
Liver - metabolism
Malondialdehyde - metabolism
Oxidative Stress - drug effects
Rats -
Rats, Wistar -

Find related publications in this database (Keywords)
1
-dihydropyridine
antioxidants
lipid peroxidation
malondialdehyde
4-hydroxynonenal
hepatoprotection
© Med Uni Graz Impressum