Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Oulhaj, A; Aziz, F; Suliman, A; Iqbal, N; Coleman, RL; Holman, RR; Sourij, H.
Joint longitudinal and time-to-event modelling compared with standard Cox modelling in patients with type 2 diabetes with and without established cardiovascular disease: An analysis of the EXSCEL trial.
Diabetes Obes Metab. 2023; 25(5):1261-1270 Doi: 10.1111/dom.14975
Web of Science PubMed FullText FullText_MUG

 

Führende Autor*innen der Med Uni Graz
Sourij Harald
Co-Autor*innen der Med Uni Graz
Aziz Faisal
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
AIM: To demonstrate the gain in predictive performance when cardiovascular disease (CVD) risk prediction tools (RPTs) incorporate repeated rather than only single measurements of risk factors. MATERIALS AND METHODS: We used data from the Exenatide Study of Cardiovascular Event Lowering (EXSCEL) trial to compare the quality of predictions of future major adverse cardiovascular events (MACE) with the Cox proportional hazards model (using single values of risk factors) compared to the Bayesian joint model (using repeated measures of risk factors). The risk of MACE was calculated in patients with type 2 diabetes with and without established CVD. We assessed the predictive ability of the following cardiovascular risk factors: glycated haemoglobin, high-density lipoprotein cholesterol (HDL-C), non-HDL-C, triglycerides, estimated glomerular filtration rate, low-density lipoprotein cholesterol (LDL-C), total cholesterol, and systolic blood pressure (SBP) using the time-dependent area under the receiver-operating characteristic curve (aROC) for discrimination and the time-dependent Brier score for calibration. RESULTS: In participants without history of CVD, the aROC of SBP increased from 0.62 to 0.69 when repeated rather than only single measurements of SBP were incorporated into the predictive model. Similarly, the aROC increased from 0.67 to 0.80 when repeated rather than only single measurements of both SBP and LDL-C were incorporated into the predictive model. For all other investigated cardiovascular risk factors, the measures of discrimination and calibration both improved when using the joint model as compared to the Cox proportional hazards model. The improvement was evident in participants with and without history of CVD but was more pronounced in the latter group. CONCLUSIONS: The analysis demonstrates that the joint modelling approach, considering trajectories of cardiovascular risk factors, provides superior predictive performance compared to standard RPTs that use only a single timepoint.
Find related publications in this database (using NLM MeSH Indexing)
Humans - administration & dosage
Bayes Theorem - administration & dosage
Cardiovascular Diseases - complications, epidemiology
Cholesterol, HDL - administration & dosage
Cholesterol, LDL - administration & dosage
Diabetes Mellitus, Type 2 - complications, drug therapy
Risk Factors - administration & dosage

Find related publications in this database (Keywords)
cardiovascular disease
joint longitudinal modelling
major adverse cardiovascular events
type 2 diabetes
© Med Uni Graz Impressum