Gewählte Publikation:
SHR
Neuro
Krebs
Kardio
Lipid
Stoffw
Microb
Leskoske, KL; Roelants, FM; Emmerstorfer-Augustin, A; Augustin, CM; Si, EP; Hill, JM; Thorner, J.
Phosphorylation by the stress-activated MAPK Slt2 down-regulates the yeast TOR complex 2.
Genes Dev. 2018; 32(23-24):1576-1590
Doi: 10.1101/gad.318709.118
[OPEN ACCESS]
Web of Science
PubMed
FullText
FullText_MUG
- Co-Autor*innen der Med Uni Graz
-
Augustin Christoph
- Altmetrics:
- Dimensions Citations:
- Plum Analytics:
- Scite (citation analytics):
- Abstract:
-
Saccharomyces cerevisiae target of rapamycin (TOR) complex 2 (TORC2) is an essential regulator of plasma membrane lipid and protein homeostasis. How TORC2 activity is modulated in response to changes in the status of the cell envelope is unclear. Here we document that TORC2 subunit Avo2 is a direct target of Slt2, the mitogen-activated protein kinase (MAPK) of the cell wall integrity pathway. Activation of Slt2 by overexpression of a constitutively active allele of an upstream Slt2 activator (Pkc1) or by auxin-induced degradation of a negative Slt2 regulator (Sln1) caused hyperphosphorylation of Avo2 at its MAPK phosphoacceptor sites in a Slt2-dependent manner and diminished TORC2-mediated phosphorylation of its major downstream effector, protein kinase Ypk1. Deletion of Avo2 or expression of a phosphomimetic Avo2 allele rendered cells sensitive to two stresses (myriocin treatment and elevated exogenous acetic acid) that the cell requires Ypk1 activation by TORC2 to survive. Thus, Avo2 is necessary for optimal TORC2 activity, and Slt2-mediated phosphorylation of Avo2 down-regulates TORC2 signaling. Compared with wild-type Avo2, phosphomimetic Avo2 shows significant displacement from the plasma membrane, suggesting that Slt2 inhibits TORC2 by promoting Avo2 dissociation. Our findings are the first demonstration that TORC2 function is regulated by MAPK-mediated phosphorylation.
© 2018 Leskoske et al.; Published by Cold Spring Harbor Laboratory Press.
- Find related publications in this database (Keywords)
-
signal transduction
-
protein kinase
-
regulation
-
yeast
-
mutants