Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Li, J; Zhou, Z; Yang, J; Pepe, A; Gsaxner, C; Luijten, G; Qu, C; Zhang, T; Chen, X; Li, W; Wodzinski, M; Friedrich, P; Xie, K; Jin, Y; Ambigapathy, N; Nasca, E; Solak, N; Melito, GM; Vu, VD; Memon, AR; Schlachta, C; De, Ribaupierre, S; Patel, R; Eagleson, R; Chen, X; Mächler, H; Kirschke, JS; de, la, Rosa, E; Christ, PF; Li, HB; Ellis, DG; Aizenberg, MR; Gatidis, S; Küstner, T; Shusharina, N; Heller, N; Andrearczyk, V; Depeursinge, A; Hatt, M; Sekuboyina, A; Löffler, MT; Liebl, H; Dorent, R; Vercauteren, T; Shapey, J; Kujawa, A; Cornelissen, S; Langenhuizen, P; Ben-Hamadou, A; Rekik, A; Pujades, S; Boyer, E; Bolelli, F; Grana, C; Lumetti, L; Salehi, H; Ma, J; Zhang, Y; Gharleghi, R; Beier, S; Sowmya, A; Garza-Villarreal, EA; Balducci, T; Angeles-Valdez, D; Souza, R; Rittner, L; Frayne, R; Ji, Y; Ferrari, V; Chatterjee, S; Dubost, F; Schreiber, S; Mattern, H; Speck, O; Haehn, D; John, C; Nürnberger, A; Pedrosa, J; Ferreira, C; Aresta, G; Cunha, A; Campilho, A; Suter, Y; Garcia, J; Lalande, A; Vandenbossche, V; Van, Oevelen, A; Duquesne, K; Mekhzoum, H; Vandemeulebroucke, J; Audenaert, E; Krebs, C; van, Leeuwen, T; Vereecke, E; Heidemeyer, H; Röhrig, R; Hölzle, F; Badeli, V; Krieger, K; Gunzer, M; Chen, J; van, Meegdenburg, T; Dada, A; Balzer, M; Fragemann, J; Jonske, F; Rempe, M; Malorodov, S; Bahnsen, FH; Seibold, C; Jaus, A; Marinov, Z; Jaeger, PF; Stiefelhagen, R; Santos, AS; Lindo, M; Ferreira, A; Alves, V; Kamp, M; Abourayya, A; Nensa, F; Hörst, F; Brehmer, A; Heine, L; Hanusrichter, Y; Weßling, M; Dudda, M; Podleska, LE; Fink, MA; Keyl, J; Tserpes, K; Kim, MS; Elhabian, S; Lamecker, H; Zukić, D; Paniagua, B; Wachinger, C; Urschler, M; Duong, L; Wasserthal, J; Hoyer, PF; Basu, O; Maal, T; Witjes, MJH; Schiele, G; Chang, TC; Ahmadi, SA; Luo, P; Menze, B; Reyes, M; Deserno, TM; Davatzikos, C; Puladi, B; Fua, P; Yuille, AL; Kleesiek, J; Egger, J.
MedShapeNet - a large-scale dataset of 3D medical shapes for computer vision.
Biomed Tech (Berl). 2025; 70(1):71-90 Doi: 10.1515/bmt-2024-0396
Web of Science PubMed FullText FullText_MUG

 

Führende Autor*innen der Med Uni Graz
Egger Jan
Li Jianning
Co-Autor*innen der Med Uni Graz
Mächler Heinrich
Schwarz-Gsaxner Christina
Urschler Martin
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
OBJECTIVES: The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models). However, a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instruments is missing. METHODS: We present MedShapeNet to translate data-driven vision algorithms to medical applications and to adapt state-of-the-art vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. We present use cases in classifying brain tumors, skull reconstructions, multi-class anatomy completion, education, and 3D printing. RESULTS: By now, MedShapeNet includes 23 datasets with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. CONCLUSIONS: MedShapeNet contains medical shapes from anatomy and surgical instruments and will continue to collect data for benchmarks and applications. The project page is: https://medshapenet.ikim.nrw/.
Find related publications in this database (using NLM MeSH Indexing)
Humans - administration & dosage
Algorithms - administration & dosage
Imaging, Three-Dimensional - methods
Brain Neoplasms - diagnostic imaging
Printing, Three-Dimensional - administration & dosage

Find related publications in this database (Keywords)
3D medical shapes
benchmark
anatomy education
shapeomics
augmented reality
virtual reality
© Med Uni Graz Impressum