Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Miao, R; Jiang, C; Chang, WY; Zhang, H; An, J; Ho, F; Chen, P; Zhang, H; Junqueira, C; Amgalan, D; Liang, FG; Zhang, J; Evavold, CL; Hafner-Bratkovič, I; Zhang, Z; Fontana, P; Xia, S; Waldeck-Weiermair, M; Pan, Y; Michel, T; Bar-Peled, L; Wu, H; Kagan, JC; Kitsis, RN; Zhang, P; Liu, X; Lieberman, J.
Gasdermin D permeabilization of mitochondrial inner and outer membranes accelerates and enhances pyroptosis.
Immunity. 2023; 56(11): 2523-2541.e8. Doi: 10.1016/j.immuni.2023.10.004 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Co-Autor*innen der Med Uni Graz
Waldeck-Weiermair Markus
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
Gasdermin D (GSDMD)-activated inflammatory cell death (pyroptosis) causes mitochondrial damage, but its underlying mechanism and functional consequences are largely unknown. Here, we show that the N-terminal pore-forming GSDMD fragment (GSDMD-NT) rapidly damaged both inner and outer mitochondrial membranes (OMMs) leading to reduced mitochondrial numbers, mitophagy, ROS, loss of transmembrane potential, attenuated oxidative phosphorylation (OXPHOS), and release of mitochondrial proteins and DNA from the matrix and intermembrane space. Mitochondrial damage occurred as soon as GSDMD was cleaved prior to plasma membrane damage. Mitochondrial damage was independent of the B-cell lymphoma 2 family and depended on GSDMD-NT binding to cardiolipin. Canonical and noncanonical inflammasome activation of mitochondrial damage, pyroptosis, and inflammatory cytokine release were suppressed by genetic ablation of cardiolipin synthase (Crls1) or the scramblase (Plscr3) that transfers cardiolipin to the OMM. Phospholipid scramblase-3 (PLSCR3) deficiency in a tumor compromised pyroptosis-triggered anti-tumor immunity. Thus, mitochondrial damage plays a critical role in pyroptosis.

© Med Uni Graz Impressum