Gewählte Publikation:
SHR
Neuro
Krebs
Kardio
Lipid
Stoffw
Microb
Dos Santos, RW; Plank, G; Bauer, S; Vigmond, EJ.
Preconditioning techniques for the bidomain equations
LECT NOTES COMP SCI ENGN. 2005; 40: 571-580.
Doi: 10.1007/3-540-26825-1_60
Web of Science
FullText
FullText_MUG
- Co-Autor*innen der Med Uni Graz
-
Plank Gernot
- Altmetrics:
- Dimensions Citations:
- Plum Analytics:
- Scite (citation analytics):
- Abstract:
- In this work we discuss parallel preconditioning techniques for the bidomain equations, a non-linear system of partial differential equations which is widely used for describing electrical activity in cardiac tissue. We focus on the solution of the linear system associated with the elliptic part of the bidomain model, since it dominates computation, with the preconditioned conjugate gradient method. We compare different parallel preconditioning techniques, such as block incomplete LU, additive Schwarz and multigrid. The implementation is based on the PETSc library and we report results for a 16-node HP cluster. The results suggest the multigrid preconditioner is the best option for the bidomain equations.