Medizinische Universität Graz - Research portal

Logo MUG Resarch Portal

Selected Publication:

Kresse, A; Pettersson, R; Hökfelt, T.
Distribution of acidic fibroblast growth factor mRNA-expressing neurons in the adult mouse central nervous system.
J Comp Neurol. 1995; 359(2): 323-339. Doi: 10.1002/cne.903590210
Web of Science PubMed FullText FullText_MUG

 

Leading authors Med Uni Graz
Kresse Adelheid
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
The distribution of acidic fibroblast growth factor (aFGF) mRNA-expressing neurons was studied throughout the adult mouse central nervous system (CNS) with in situ hybridization histochemistry using a radiolabelled synthetic oligodeoxynucleotide probe complementary to the mRNA of human aFGF. We report here a widespread distribution of aFGF mRNA in several defined functional systems of the adult mouse brain, whereby the highest levels of aFGF mRNA were found in large somatomotor neurons in the nuclei of the oculomotor, trochlear, abducens, and hypoglossal nerves; in the motoneurons of the ventral spinal cord and the special visceromotor neurons in the motor nucleus of the trigeminal nerve; and in the facial and ambiguus nuclei. Labelled perikarya were also detected in all central structures of the auditory pathway including the level of the inferior colliculus, i.e., the lateral and medial superior nuclei; the trapezoid, cochlear, and lateral lemniscal nuclei; and parts of the anterior colliculus. Furthermore, many aFGF-positive cell bodies were found in the vestibular system and other structures projecting to the cerebellum, in the deep cerebellar nuclei, in somatosensory structures of the medulla (i.e., in the gracile, cuneate, and external cuneate nuclei), as well as in the spinal nucleus of the trigeminal nerve. The findings that aFGF mRNA is expressed in all components of several well-defined systems (i.e., in sensory structures) as well as in central neurons that process sensory information and, finally, in some efferent projections point towards a concept of aFGF expression primarily within certain neuronal circuitries.
Find related publications in this database (using NLM MeSH Indexing)
Animals -
Central Nervous System - chemistry
Diencephalon - chemistry
Fibroblast Growth Factor 1 - genetics
Histocytochemistry - genetics
Humans - genetics
In Situ Hybridization - genetics
Male - genetics
Medulla Oblongata - chemistry
Mesencephalon - chemistry
Mice - chemistry
Mice, Inbred C57BL - chemistry
Neurons - chemistry
Pons - chemistry
RNA, Messenger - analysis
Spinal Cord - chemistry
Telencephalon - chemistry

Find related publications in this database (Keywords)
FGF-1
NEUROTROPHIC FACTOR
AUDITORY PATHWAY
IN SITU HYBRIDIZATION
© Med Uni GrazImprint