Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

Schaeffer, G; Levak-Frank, S; Spitaler, MM; Fleischhacker, E; Esenabhalu, VE; Wagner, AH; Hecker, M; Graier, WF.
Intercellular signalling within vascular cells under high D-glucose involves free radical-triggered tyrosine kinase activation.
Diabetologia. 2003; 46(6):773-783 Doi: 10.1007/s00125-003-1091-y [OPEN ACCESS]
Web of Science PubMed FullText FullText_MUG Google Scholar

 

Führende Autor*innen der Med Uni Graz
Graier Wolfgang
Co-Autor*innen der Med Uni Graz
Levak Sanja
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
AIMS/HYPOTHESIS: Diabetes mellitus is associated with endothelial dysfunction in human arteries due to the release of superoxide anions (*O(2)(-)) that was found to occur predominantly in smooth muscle cells (SMC). This study was designed to elucidate the impact of high glucose concentration mediated radical production in SMC on EC. Pre-treatment of vascular SMC with increased D-glucose enhanced release of *O(2)(-). METHODS: Microscope-based analyses of intracellular free Ca(2+) concentration (fura-2), immunohistochemistry (f-actin) and tyrosine kinase activity were performed. Furthermore, RT-PCR and Western blots were carried out. RESULTS: Interaction of EC with SMC pre-exposed to high glucose concentration yielded changes in endothelial Ca(2+) signalling and polymerization of f-actin in a concentration-dependent and superoxide dismutase (SOD) sensitive manner. This interaction activated endothelial tyrosine kinase(s) but not NFkappaB and AP-1, while SOD prevented tyrosine kinase stimulation but facilitated NFkappaB and AP-1 activation. Erbstatin, herbimycin A and the src family specific kinase inhibitor PP-1 but not the protein kinase C inhibitor GF109203X prevented changes in endothelial Ca(2+) signalling and cytoskeleton organization induced by pre-exposure of SMC to high glucose concentration. Adenovirus-mediated expression of kinase-inactive c-src blunted the effect of pre-exposure of SMC to high glucose concentration on EC. CONCLUSIONS/INTERPRETATION: These data suggest that SMC-derived *O(2)(-) alter endothelial cytoskeleton organization and Ca(2+) signalling via activation of c-src. The activation of c-src by SMC-derived radicals is a new concept of the mechanisms underlying vascular dysfunction in diabetes.
Find related publications in this database (using NLM MeSH Indexing)
Animals -
Aorta -
Calcium Signaling - physiology
Cells, Cultured - physiology
Cytoskeleton - drug effects
Endothelium, Vascular - cytology
Enzyme Activation - drug effects
Hyperglycemia - drug effects
Mannitol - pharmacology
NF-kappa B - genetics
Protein-Tyrosine Kinases - metabolism
Reverse Transcriptase Polymerase Chain Reaction - metabolism
Superoxides - metabolism
Swine - metabolism
Transcription Factor AP-1 - genetics
Transcription Factors - genetics

Find related publications in this database (Keywords)
AP-1
cytoskeleton
diabetes
hyperglycaemia
Ca2+
NF kappa B
src
superoxide anion
© Med Uni Graz Impressum