Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

Eggan, K; Rode, A; Jentsch, I; Samuel, C; Hennek, T; Tintrup, H; Zevnik, B; Erwin, J; Loring, J; Jackson-Grusby, L; Speicher, MR; Kuehn, R; Jaenisch, R.
Male and female mice derived from the same embryonic stem cell clone by tetraploid embryo complementation.
Nat Biotechnol. 2002; 20(5):455-459 Doi: 10.1038/nbt0502-455
Web of Science PubMed FullText FullText_MUG Google Scholar

 

Co-Autor*innen der Med Uni Graz
Speicher Michael
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
We have devised a general strategy for producing female mice from 39,X0 embryonic stem (ES) cells derived from male cell lines carrying a targeted mutation of interest. We show that the Y chromosome is lost in 2% of subclones from 40,XY ES cell lines, making the identification of targeted 39,X0 subclones a routine procedure. After gene targeting, male and female mice carrying the mutation can be generated by tetraploid embryo complementation from the 40,XY ES cell line and its 39,X0 derivatives. A single intercross then produces homozygous mutant offspring. Because this strategy avoids outcrossing and therefore segregation of mutant alleles introduced into the ES cells, the time and expense required for production of experimental mutant animals from a targeted ES cell clone are substantially reduced. Our data also indicate that ES cells have inherently unstable karyotypes, but this instability does not interfere with production of adult ES cell tetraploid mice.
Find related publications in this database (using NLM MeSH Indexing)
Alleles -
Animals -
Blotting, Southern -
Cell Line -
Cloning, Organism -
Embryo - cytology
Female - cytology
Genetic Techniques - cytology
Genotype - cytology
Homozygote - cytology
In Situ Hybridization, Fluorescence - cytology
Karyotyping - cytology
Male - cytology
Metaphase - cytology
Mice - cytology
Mutation - cytology
Ploidies - cytology
Sex Factors - cytology
Stem Cells - cytology
Time Factors - cytology
X Chromosome - cytology
Y Chromosome - cytology

© Med Uni Graz Impressum