Gewählte Publikation:
SHR
Neuro
Krebs
Kardio
Lipid
Stoffw
Microb
Holzapfel, GA; Sommer, G; Gasser, CT; Regitnig, P.
Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling.
AMER J PHYSIOL-HEART CIRC PHY. 2005; 289(5): H2048-H2058.
Doi: 10.1152/ajpheart.00934.2004
[OPEN ACCESS]
Web of Science
PubMed
FullText
FullText_MUG
- Co-Autor*innen der Med Uni Graz
-
Regitnig Peter
- Altmetrics:
- Dimensions Citations:
- Plum Analytics:
- Scite (citation analytics):
- Abstract:
- At autopsy, 13 nonstenotic human left anterior descending coronary arteries [71.5 +/- 7.3 (mean +/- SD) yr old] were harvested, and related anamnesis was documented. Preconditioned prepared strips (n = 78) of segments from the midregion of the left anterior descending coronary artery from the individual layers in axial and circumferential directions were subjected to cyclic quasi-static uniaxial tension tests, and ultimate tensile stresses and stretches were documented. The ratio of outer diameter to total wall thickness was 0.189 +/- 0.014; ratios of adventitia, media, and intima thickness to total wall thickness were 0.4 +/- 0.03, 0.36 +/- 0.03, and 0.27 +/- 0.02, respectively; axial in situ stretch of 1.044 +/- 0.06 decreased with age. Stress-stretch responses for the individual tissues showed pronounced mechanical heterogeneity. The intima is the stiffest layer over the whole deformation domain, whereas the media in the longitudinal direction is the softest. All specimens exhibited small hysteresis and anisotropic and strong nonlinear behavior in both loading directions. The media and intima showed similar ultimate tensile stresses, which are on average three times smaller than ultimate tensile stresses in the adventitia (1,430 +/- 604 kPa circumferential and 1,300 +/- 692 kPa longitudinal). The ultimate tensile stretches are similar for all tissue layers. A recently proposed constitutive model was extended and used to represent the deformation behavior for each tissue type over the entire loading range. The study showed the need to model nonstenotic human coronary arteries with nonatherosclerotic intimal thickening as a composite structure composed of three solid mechanically relevant layers with different mechanical properties. The intima showed significant thickness, load-bearing capacity, and mechanical strength compared with the media and adventitia.
- Find related publications in this database (using NLM MeSH Indexing)
-
Aged -
-
Aged, 80 and over -
-
Algorithms -
-
Anisotropy -
-
Biomechanics -
-
Coronary Artery Disease - physiopathology
-
Coronary Vessels - physiopathology
-
Female - physiopathology
-
Humans - physiopathology
-
Ischemic Preconditioning - physiopathology
-
Male - physiopathology
-
Middle Aged - physiopathology
-
Models, Biological - physiopathology
-
Nonlinear Dynamics - physiopathology
-
Stress, Mechanical - physiopathology
-
Tensile Strength - physiopathology
- Find related publications in this database (Keywords)
-
human left anterior descending coronary artery
-
elasticity
-
material model
-
mechanical properties
-
ultimate tensile strength