Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Kostric, M; Milger, K; Krauss-Etschmann, S; Engel, M; Vestergaard, G; Schloter, M; Schöler, A.
Development of a Stable Lung Microbiome in Healthy Neonatal Mice.
Microb Ecol. 2018; 75(2): 529-542. Doi: 10.1007/s00248-017-1068-x
Web of Science PubMed FullText FullText_MUG

 

Co-Autor*innen der Med Uni Graz
Milger-Kneidinger Katrin
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
The lower respiratory tract has been previously considered sterile in a healthy state, but advances in culture-independent techniques for microbial identification and characterization have revealed that the lung harbors a diverse microbiome. Although research on the lung microbiome is increasing and important questions were already addressed, longitudinal studies aiming to describe developmental stages of the microbial communities from the early neonatal period to adulthood are lacking. Thus, little is known about the early-life development of the lung microbiome and the impact of external factors during these stages. In this study, we applied a barcoding approach based on high-throughput sequencing of 16S ribosomal RNA gene amplicon libraries to determine age-dependent differences in the bacterial fraction of the murine lung microbiome and to assess potential influences of differing "environmental microbiomes" (simulated by the application of used litter material to the cages). We could clearly show that the diversity of the bacterial community harbored in the murine lung increases with age. Interestingly, bacteria belonging to the genera Delftia and Rhodococcus formed an age-independent core microbiome. The addition of the used litter material influenced the lung microbiota of young mice but did not significantly alter the community composition of adult animals. Our findings elucidate the dynamic nature of the early-life lung microbiota and its stabilization with age. Further, this study indicates that even slight environmental changes modulate the bacterial community composition of the lung microbiome in early life, whereas the lung microbes of adults demonstrate higher resilience towards environmental variations.
Find related publications in this database (using NLM MeSH Indexing)
Animals - administration & dosage
Animals, Newborn - microbiology
Bacteria - classification, genetics, isolation & purification
DNA, Bacterial - genetics
DNA, Ribosomal - genetics
Female - administration & dosage
High-Throughput Nucleotide Sequencing - administration & dosage
Lung - microbiology
Mice - administration & dosage
Mice, Inbred BALB C - administration & dosage
Microbiota - administration & dosage

Find related publications in this database (Keywords)
Murine lung microbiome
16S rRNA-based barcoding
Core microbiome
Delftia
Rhodococcus
© Med Uni Graz Impressum