Medizinische Universität Graz - Research portal

Logo MUG Resarch Portal

Selected Publication:

SHR Neuro Cancer Cardio Lipid Metab Microb

Henyš, P; Hammer, N.
Sacroiliac joint auricular surface morphology modulates its mechanical environment.
J Anat. 2024; Doi: 10.1111/joa.14160 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Leading authors Med Uni Graz
Hammer Niels
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
The sacroiliac joint (SIJ) exhibits significant variation in auricular surface morphology. This variation influences the mechanics of the SIJ, a central node for transmitting mechanical energy from upper body to lower limbs and vice versa. The impact of the auricular surface morphology on stress and deformation in the SIJ remains poorly understood to date. Computed tomography scans obtained from 281 individuals were included to extract the geometry of the pelvic ring. Then, the auricular surface area, SIJ cartilage thickness, and total SIJ cartilage volume were identified. Based on these reconstructions, 281 finite element models were created to simulate SIJ mechanical loading. It was found that SIJ cartilage thickness only weakly depended on age or laterality, while being strongly sex sensitive. Auricular surface area and SIJ cartilage volume depended weakly and non-linearly on age, peaking around menopause in females, but without significant laterality effect. Larger SIJs, characterized by greater auricular area and cartilage volume, exhibited reduced stress and deformation under loading. These findings highlight the significant role of SIJ morphology in its biomechanical response, suggesting a potential link between morphological variations and the risk of SIJ dysfunction. Understanding this relationship could improve diagnosis and targeted treatment strategies for SIJ-related conditions.

Find related publications in this database (Keywords)
finite element simulation
machine learning
sacroiliac joint anatomy
© Med Uni GrazImprint