Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Pfeifer, B; Kapan, DD; Herzog, SA.
Detection and quantification of introgression using Bayesian inference based on conjugate priors.
Bioinformatics. 2024; 40(11): Doi: 10.1093/bioinformatics/btae642 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Führende Autor*innen der Med Uni Graz
Pfeifer Bastian
Co-Autor*innen der Med Uni Graz
Herzog Sereina Annik
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
SUMMARY: Introgression (the flow of genes between species) is a major force structuring the evolution of genomes, potentially providing raw material for adaptation. Here, we present a versatile Bayesian model selection approach for detecting and quantifying introgression, df-BF, that builds upon the recently published distance-based df statistic. Unlike df, df-BF accounts for the number of variant sites within a genomic region. The underlying model parameter of our df-BF method, here denoted as dfθ, accurately quantifies introgression, and the corresponding Bayes Factors (df-BF) enables weighing the strength of evidence for introgression. To ensure fast computation, we use conjugate priors with no need for computationally demanding MCMC iterations. We compare our method with other approaches including df, fd, Dp, and Patterson's D using a wide range of coalescent simulations. Furthermore, we showcase the applicability of df-BF and dfθ using whole-genome mosquito data. Finally, we integrate the new method into the powerful genomics R-package PopGenome. AVAILABILITY AND IMPLEMENTATION: The presented methods are implemented within the R-package PopGenome (https://github.com/pievos101/PopGenome) and the simulation as the application results can be reproduced from the source code available from a dedicated GitHub repository (https://github.com/pievos101/Introgression-Simulation).
Find related publications in this database (using NLM MeSH Indexing)
Bayes Theorem - administration & dosage
Genomics - methods
Animals - administration & dosage
Software - administration & dosage
Genetic Introgression - administration & dosage
Algorithms - administration & dosage
Culicidae - genetics

© Med Uni Graz Impressum