Gewählte Publikation:
SHR
Neuro
Krebs
Kardio
Lipid
Stoffw
Microb
Leitner, M; Opriessnig, P; Ropele, S; Schmidt, R; Leal-Garcia, M; Fellner, M; Koini, M.
Changes in thalamic functional connectivity in post-Covid patients with and without fatigue.
Neuroimage. 2024; 301:120888
Doi: 10.1016/j.neuroimage.2024.120888
Web of Science
PubMed
FullText
FullText_MUG
- Führende Autor*innen der Med Uni Graz
-
Koini Marisa
-
Leitner Manuel
- Co-Autor*innen der Med Uni Graz
-
Opriessnig Peter
-
Ropele Stefan
-
Schmidt Reinhold
- Altmetrics:
- Dimensions Citations:
- Plum Analytics:
- Scite (citation analytics):
- Abstract:
- BACKGROUND: Functional brain alterations in post-Covid-19 condition have been minimally explored to date. Here, we investigate differences in resting-state thalamic functional connectivity among post-Covid patients with and without fatigue, alongside structural brain changes and cognition. METHODS: Thirty-nine post-Covid patients (n = 15 fatigued, n = 24 non-fatigued) participated in our study, undergoing comprehensive cognitive assessments, as well as functional and structural neuroimaging. We conducted a seed-based functional connectivity analysis using the thalamus as a seed region, exploring its connectivity with the entire brain. To further elucidate our findings, correlation analyses were performed using the functional coupling between the thalamus and regions showing different connectivity between the two patient groups. RESULTS: Our results reveal that patients experiencing fatigue exhibit anti-correlated functional coupling between the thalamus and motor-associated regions, including the motor cortex (M1), supplementary motor area (SMA), and anterior cingulate cortex (ACC), compared to non-fatigued patients, who are showing positive functional coupling. Furthermore, this observed coupling was found to correlate with both the fatigue scores obtained from a fatigue questionnaire and performance on the Trail Making Test, Part A, which represents a measure of processing speed. CONCLUSIONS: Our study highlights significant differences in resting-state functional connectivity between post-Covid patients with and without fatigue, particularly within motor-associated brain regions. These findings suggest a potential neural mechanism underlying post-Covid fatigue and underscore the importance of considering both functional and structural brain changes in understanding the symptomatic sequelae of post-Covid-19 condition. Further research is warranted to provide insight into the longitudinal trajectories of these neural alterations.
- Find related publications in this database (using NLM MeSH Indexing)
-
Humans - administration & dosage
-
Female - administration & dosage
-
Male - administration & dosage
-
COVID-19 - complications, physiopathology, diagnostic imaging
-
Thalamus - diagnostic imaging, physiopathology
-
Fatigue - physiopathology, diagnostic imaging
-
Magnetic Resonance Imaging - administration & dosage
-
Middle Aged - administration & dosage
-
Adult - administration & dosage
-
Connectome - methods
-
Aged - administration & dosage
-
Nerve Net - diagnostic imaging, physiopathology
-
Neural Pathways - physiopathology, diagnostic imaging
-
SARS-CoV-2 - administration & dosage
- Find related publications in this database (Keywords)
-
Post-Covid
-
Fatigue
-
Thalamus
-
Region of interest
-
Motor cortex