Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Xenakis, MN; Kapetis, D; Yang, Y; Heijman, J; Waxman, SG; Lauria, G; Faber, CG; Smeets, HJ; Westra, RL; Lindsey, PJ.
Cumulative hydropathic topology of a voltage-gated sodium channel at atomic resolution
PROTEINS. 2020; 88(10): 1319-1328. Doi: 10.1002/prot.25951
Web of Science PubMed FullText FullText_MUG

 

Co-Autor*innen der Med Uni Graz
Heijman Jordi
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
Voltage-gated sodium channels (NavChs) are biological pores that control the flow of sodium ions through the cell membrane. In humans, mutations in genes encoding NavChs can disrupt physiological cellular activity thus leading to a wide spectrum of diseases. Here, we present a topological connection between the functional architecture of a NavAb bacterial channel and accumulation of atomic hydropathicity around its pore. This connection is established via a scaling analysis methodology that elucidates how intrachannel hydropathic density variations translate into hydropathic dipole field configurations along the pore. Our findings suggest the existence of a nonrandom cumulative hydropathic topology that is organized parallel to the membrane surface so that pore's stability, as well as, gating behavior are guaranteed. Given the biophysical significance of the hydropathic effect, our study seeks to provide a computational framework for studying cumulative hydropathic topological properties of NavChs and pore-forming proteins in general.

Find related publications in this database (Keywords)
cumulative hydropathic effects
hydrophobic gating
NavAb
scaling
topology
voltage-gated sodium channels
© Med Uni Graz Impressum