Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Huppertz, B.
Placental physioxia is based on spatial and temporal variations of placental oxygenation throughout pregnancy.
J REPROD IMMUNOL. 2023; 158: 103985 Doi: 10.1016/j.jri.2023.103985
Web of Science PubMed FullText FullText_MUG

 

Führende Autor*innen der Med Uni Graz
Huppertz Berthold
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
For obvious reasons, in vivo measurements of placental oxygenation are extremely rare and hence, scientists need to focus on the few studies that revealed at least some data on the topic. The scarcity of real in vivo data resulted in the development of hypotheses on placental oxygenation that blocked an objective view on the topic for decades. Only now, new hypotheses are emerging adding new views and ideas on the topic. Especially in the field of preeclampsia, hypotheses on placental oxygenation have mislead a whole generation of scientists. This review article displays the available in vivo placental oxygen data from 8 to 40 weeks of gestation. It also compares these physiological oxygen concentrations, called physioxia, with the situation in pre-placental hypoxia, i.e. pregnancies at high altitude. Finally, it summarizes what we know today about oxygen measurements in cases with preeclampsia. In early-onset preeclampsia cases, all in vivo data available today point to increased oxygen values in the intervillous space of the placenta. This is due to a reduced oxygen transfer of the placental barrier from maternal to fetal blood, resulting in hypoxia of fetal blood and the fetus.

Find related publications in this database (Keywords)
Physioxia
Placenta
Oxygenation
PO2
Preeclampsia
Fetal growth restriction
High altitude
Hyperoxia
Hypoxia
© Med Uni Graz Impressum