Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Frohlich, E.
The Variety of 3D Breast Cancer Models for the Study of Tumor Physiology and Drug Screening
INT J MOL SCI. 2023; 24(8): 7116 Doi: 10.3390/ijms24087116 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Führende Autor*innen der Med Uni Graz
Fröhlich Eleonore
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
Breast cancer is the most common cancer in women and responsible for multiple deaths worldwide. 3D cancer models enable a better representation of tumor physiology than the conventional 2D cultures. This review summarizes the important components of physiologically relevant 3D models and describes the spectrum of 3D breast cancer models, e.g., spheroids, organoids, breast cancer on a chip and bioprinted tissues. The generation of spheroids is relatively standardized and easy to perform. Microfluidic systems allow control over the environment and the inclusion of sensors and can be combined with spheroids or bioprinted models. The strength of bioprinting relies on the spatial control of the cells and the modulation of the extracellular matrix. Except for the predominant use of breast cancer cell lines, the models differ in stromal cell composition, matrices and fluid flow. Organoids are most appropriate for personalized treatment, but all technologies can mimic most aspects of breast cancer physiology. Fetal bovine serum as a culture supplement and Matrigel as a scaffold limit the reproducibility and standardization of the listed 3D models. The integration of adipocytes is needed because they possess an important role in breast cancer.

Find related publications in this database (Keywords)
3D models
breast cancer
spheroids
organoids
microfluidic techniques
bioprinting
tumor microenvironment
© Med Uni Graz Impressum