Selected Publication:
SHR
Neuro
Cancer
Cardio
Lipid
Metab
Microb
Gao, Y; Vidal-Itriago, A; Kalsbeek, MJ; Layritz, C; García-Cáceres, C; Tom, RZ; Eichmann, TO; Vaz, FM; Houtkooper, RH; van, der, Wel, N; Verhoeven, AJ; Yan, J; Kalsbeek, A; Eckel, RH; Hofmann, SM; Yi, CX.
Lipoprotein Lipase Maintains Microglial Innate Immunity in Obesity.
Cell Rep. 2017; 20(13): 3034-3042.
Doi: 10.1016/j.celrep.2017.09.008
Web of Science
PubMed
FullText
FullText_MUG
- Co-authors Med Uni Graz
-
Eichmann Thomas
- Altmetrics:
- Dimensions Citations:
- Plum Analytics:
- Scite (citation analytics):
- Abstract:
- Consumption of a hypercaloric diet upregulates microglial innate immune reactivity along with a higher expression of lipoprotein lipase (Lpl) within the reactive microglia in the mouse brain. Here, we show that knockdown of the Lpl gene specifically in microglia resulted in deficient microglial uptake of lipid, mitochondrial fuel utilization shifting to glutamine, and significantly decreased immune reactivity. Mice with knockdown of the Lpl gene in microglia gained more body weight than control mice on a high-carbohydrate high-fat (HCHF) diet. In these mice, microglial reactivity was significantly decreased in the mediobasal hypothalamus, accompanied by downregulation of phagocytic capacity and increased mitochondrial dysmorphologies. Furthermore, HCHF-diet-induced POMC neuronal loss was accelerated. These results show that LPL-governed microglial immunometabolism is essential to maintain microglial function upon exposure to an HCHF diet. In a hypercaloric environment, lack of such an adaptive immunometabolic response has detrimental effects on CNS regulation of energy metabolism.
- Find related publications in this database (using NLM MeSH Indexing)
-
Animals - administration & dosage
-
Immunity, Innate - immunology
-
Lipoprotein Lipase - metabolism
-
Mice - administration & dosage
-
Microglia - metabolism
-
Obesity - immunology