Medizinische Universität Graz - Research portal

Logo MUG Resarch Portal

Selected Publication:

SHR Neuro Cancer Cardio Lipid Metab Microb

Mert, A; Buehler, K; Sutherland, GR; Tomanek, B; Widhalm, G; Kasprian, G; Knosp, E; Wolfsberger, S.
Brain tumor surgery with 3-dimensional surface navigation.
Neurosurgery. 2012; 71(2 Suppl Operative):ons286-94; discussion ons294-5 Doi: 10.1227/NEU.0b013e31826a8a75
Web of Science PubMed FullText FullText_MUG

 

Leading authors Med Uni Graz
Wolfsberger Stefan
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
BACKGROUND: Precise lesion localization is necessary for neurosurgical procedures not only during the operative approach, but also during the preoperative planning phase. OBJECTIVE: To evaluate the advantages of 3-dimensional (3-D) brain surface visualization over conventional 2-dimensional (2-D) magnetic resonance images for surgical planning and intraoperative guidance in brain tumor surgery. METHODS: Preoperative 3-D brain surface visualization was performed with neurosurgical planning software in 77 cases (58 gliomas, 7 cavernomas, 6 meningiomas, and 6 metastasis). Direct intraoperative navigation on the 3-D brain surface was additionally performed in the last 20 cases with a neurosurgical navigation system. For brain surface reconstruction, patient-specific anatomy was obtained from MR imaging and brain volume was extracted with skull stripping or watershed algorithms, respectively. Three-dimensional visualization was performed by direct volume rendering in both systems. To assess the value of 3-D brain surface visualization for topographic lesion localization, a multiple-choice test was developed. To assess accuracy and reliability of 3-D brain surface visualization for intraoperative orientation, we topographically correlated superficial vessels and gyral anatomy on 3-D brain models with intraoperative images. RESULTS: The rate of correct lesion localization with 3-D was significantly higher (P = .001, χ), while being significantly less time consuming (P < .001, χ) compared with 2-D images. Intraoperatively, visual correlation was found between the 3-D images, superficial vessels, and gyral anatomy. CONCLUSION: The proposed method of 3-D brain surface visualization is fast, clinically reliable for preoperative anatomic lesion localization and patient-specific planning, and, together with navigation, improves intraoperative orientation in brain tumor surgery and is relatively independent of brain shift.
Find related publications in this database (using NLM MeSH Indexing)
Algorithms - administration & dosage
Brain Neoplasms - pathology, surgery
Humans - administration & dosage
Imaging, Three-Dimensional - methods
Neuronavigation - methods
Software - administration & dosage

Find related publications in this database (Keywords)
3-D brain surface imaging
3-D image
3-D navigation
Intraoperative orientation
Surgical planning
© Med Uni GrazImprint