Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Moser, C; Jurinovic, V; Sagebiel-Kohler, S; Ksienzyk, B; Batcha, AMN; Dufour, A; Schneider, S; Rothenberg-Thurley, M; Sauerland, CM; Görlich, D; Berdel, WE; Krug, U; Mansmann, U; Hiddemann, W; Braess, J; Spiekermann, K; Greif, PA; Vosberg, S; Metzeler, KH; Kumbrink, J; Herold, T.
A clinically applicable gene expression-based score predicts resistance to induction treatment in acute myeloid leukemia.
Blood Adv. 2021; 5(22):4752-4761 Doi: 10.1182/bloodadvances.2021004814 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Co-Autor*innen der Med Uni Graz
Vosberg Sebastian
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
Prediction of resistant disease at initial diagnosis of acute myeloid leukemia (AML) can be achieved with high accuracy using cytogenetic data and 29 gene expression markers (Predictive Score 29 Medical Research Council; PS29MRC). Our aim was to establish PS29MRC as a clinically usable assay by using the widely implemented NanoString platform and further validate the classifier in a more recently treated patient cohort. Analyses were performed on 351 patients with newly diagnosed AML intensively treated within the German AML Cooperative Group registry. As a continuous variable, PS29MRC performed best in predicting induction failure in comparison with previously published risk models. The classifier was strongly associated with overall survival. We were able to establish a previously defined cutoff that allows classifier dichotomization (PS29MRCdic). PS29MRCdic significantly identified induction failure with 59% sensitivity, 77% specificity, and 72% overall accuracy (odds ratio, 4.81; P = 4.15 × 10-10). PS29MRCdic was able to improve the European Leukemia Network 2017 (ELN-2017) risk classification within every category. The median overall survival with high PS29MRCdic was 1.8 years compared with 4.3 years for low-risk patients. In multivariate analysis including ELN-2017 and clinical and genetic markers, only age and PS29MRCdic were independent predictors of refractory disease. In patients aged ≥60 years, only PS29MRCdic remained as a significant variable. In summary, we confirmed PS29MRC as a valuable classifier to identify high-risk patients with AML. Risk classification can still be refined beyond ELN-2017, and predictive classifiers might facilitate clinical trials focusing on these high-risk patients with AML.
Find related publications in this database (using NLM MeSH Indexing)
Cohort Studies - administration & dosage
Cytogenetics - administration & dosage
Gene Expression - administration & dosage
Humans - administration & dosage
Leukemia, Myeloid, Acute - diagnosis, drug therapy, genetics
Prognosis - administration & dosage

© Med Uni Graz Impressum