Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Frohlich, E; Wahl, R.
Physiological Role and Use of Thyroid Hormone Metabolites-Potential Utility in COVID-19 Patients
FRONT ENDOCRINOL. 2021; 12: 587518 Doi: 10.3389/fendo.2021.587518 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Führende Autor*innen der Med Uni Graz
Fröhlich Eleonore
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
Thyroxine and triiodothyronine (T3) are classical thyroid hormones and with relatively well-understood actions. In contrast, the physiological role of thyroid hormone metabolites, also circulating in the blood, is less well characterized. These molecules, namely, reverse triiodothyronine, 3,5-diiodothyronine, 3-iodothyronamine, tetraiodoacetic acid and triiodoacetic acid, mediate both agonistic (thyromimetic) and antagonistic actions additional to the effects of the classical thyroid hormones. Here, we provide an overview of the main factors influencing thyroid hormone action, and then go on to describe the main effects of the metabolites and their potential use in medicine. One section addresses thyroid hormone levels in corona virus disease 19 (COVID-19). It appears that i) the more potently-acting molecules T3 and triiodoacetic acid have shorter half-lives than the less potent antagonists 3-iodothyronamine and tetraiodoacetic acid; ii) reverse T3 and 3,5-diiodothyronine may serve as indicators for metabolic dysregulation and disease, and iii) Nanotetrac may be a promising candidate for treating cancer, and resmetirom and VK2809 for steatohepatitis. Further, the use of L-T3 in the treatment of severely ill COVID-19 patients is critically discussed.

Find related publications in this database (Keywords)
triiodothyronine
non-thyroidal illness syndrome
COVID-19
3
5-diiodothyronine
tetraiodoacetic acid
triiodoacetic acid
thyromimetics
© Med Uni Graz Impressum