Medizinische Universität Graz - Research portal

Logo MUG Resarch Portal

Selected Publication:

SHR Neuro Cancer Cardio Lipid Metab Microb

Simbrunner, J; Schrode, B; Hofer, S; Domke, J; Fritz, T; Forker, R; Resel, R.
Searching for New Polymorphs by Epitaxial Growth.
J Phys Chem C Nanomater Interfaces. 2021; 125(1): 618-626. Doi: 10.1021/acs.jpcc.0c10021 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Leading authors Med Uni Graz
Simbrunner Josef
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
The formation of unknown polymorphs due to the crystallization at a substrate surface is frequently observed. This phenomenon is much less studied for epitaxially grown molecular crystals since the unambiguous proof of a new polymorph is a challenging task. The existence of multiple epitaxial alignments of the crystallites together with the simultaneous presence of different polymorphs does not allow simple phase identification. We present grazing incidence X-ray diffraction studies on conjugated molecules like perylenetetracarboxylic dianhydride (PTCDA), pentacene, dibenzopentacene (trans-DBPen), and dicyanovinylquater-thiophene (DCV4T-Et2) grown by physical vapor deposition on single crystalline surfaces like Ag(111), Cu(111), and graphene. A new method for indexing the observed Bragg peaks allows the determination of the crystallographic unit cells so that the type of crystallographic phase can be clearly identified. This approach even works when several polymorphs are simultaneously present within a single sample as shown for DCV4T-Et2 on Ag(111). Additionally, epitaxial relationships between the epitaxially grown crystallites and the single crystalline surfaces are determined. In a subsequent step, the experimental data are used for the crystal structure solution of an unknown polymorph, as shown for the example trans-DBPen grown on Cu(111). © 2020 American Chemical Society.

© Med Uni GrazImprint