Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Luze, H; Nischwitz, SP; Kotzbeck, P; Fink, J; Holzer, JCJ; Popp, D; Kamolz, LP.
Personal protective equipment in the COVID-19 pandemic and the use of cooling-wear as alleviator of thermal stress : A pilot study in plastic surgery staff members.
Wien Klin Wochenschr. 2021; 133(7-8):312-320 Doi: 10.1007/s00508-020-01775-x [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Führende Autor*innen der Med Uni Graz
Luze Hanna
Co-Autor*innen der Med Uni Graz
Geißler Judith Christine Julie
Kamolz Lars-Peter
Kotzbeck Petra
Nischwitz Sebastian
Popp Daniel
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
BACKGROUND: High temperatures at workplaces lead to health-related risks and premature exhaustion. The coronavirus disease 2019 (COVID-19) pandemic requires many health professionals to perform under unfavorable conditions. Personal protective equipment (PPE) causes thermal stress and negatively affects performance. PATIENTS, MATERIALS AND METHODS: This pilot project investigated the effects of PPE and additional cooling wear on physiological parameters and concentration of six healthy staff members of the Plastic Surgery Department of the Medical University of Graz, Austria during simulated patient care. In this study two 1‑hour cycles with patient care-related tasks with PPE and PPE + cooling-wear, respectively, were conducted. A third cycle with scrubs exclusively served as baseline/negative control. The assessment occurred immediately pre-cycles and post-cycles. RESULTS: Pre-cycle assessments showed no significant differences between the cycles. After PPE cycle, increased physical stress levels and decrements in concentration capacity were observed. Physiological parameters were significantly less affected in the cooling cycle, while concentration capacity slightly increased. CONCLUSION: COVID-19 PPE causes considerable thermal stress, ultimately affecting human performance. As opportunity to withstand thermal stress, and improve patients' and professionals' safety, cooling-wear can be considered relevant. Medical personnel performing in exceptional situations may particularly benefit from further development and investigation of cooling strategies.
Find related publications in this database (using NLM MeSH Indexing)
Austria - administration & dosage
COVID-19 - administration & dosage
Humans - administration & dosage
Pandemics - administration & dosage
Personal Protective Equipment - administration & dosage
Pilot Projects - administration & dosage
SARS-CoV-2 - administration & dosage
Surgery, Plastic - administration & dosage

Find related publications in this database (Keywords)
Thermal stress
Cooling wear
COVID-19
PPE
Concentration
© Med Uni Graz Impressum