Gewählte Publikation:
SHR
Neuro
Krebs
Kardio
Lipid
Stoffw
Microb
Fabene, PF; Navarro Mora, G; Martinello, M; Rossi, B; Merigo, F; Ottoboni, L; Bach, S; Angiari, S; Benati, D; Chakir, A; Zanetti, L; Schio, F; Osculati, A; Marzola, P; Nicolato, E; Homeister, JW; Xia, L; Lowe, JB; McEver, RP; Osculati, F; Sbarbati, A; Butcher, EC; Constantin, G.
A role for leukocyte-endothelial adhesion mechanisms in epilepsy.
Nat Med. 2008; 14(12): 1377-1383.
Doi: 10.1038/nm.1878
[OPEN ACCESS]
Web of Science
PubMed
FullText
FullText_MUG
- Co-Autor*innen der Med Uni Graz
-
Angiari Stefano
- Altmetrics:
- Dimensions Citations:
- Plum Analytics:
- Scite (citation analytics):
- Abstract:
-
The mechanisms involved in the pathogenesis of epilepsy, a chronic neurological disorder that affects approximately one percent of the world population, are not well understood. Using a mouse model of epilepsy, we show that seizures induce elevated expression of vascular cell adhesion molecules and enhanced leukocyte rolling and arrest in brain vessels mediated by the leukocyte mucin P-selectin glycoprotein ligand-1 (PSGL-1, encoded by Selplg) and leukocyte integrins alpha(4)beta(1) and alpha(L)beta(2). Inhibition of leukocyte-vascular interactions, either with blocking antibodies or by genetically interfering with PSGL-1 function in mice, markedly reduced seizures. Treatment with blocking antibodies after acute seizures prevented the development of epilepsy. Neutrophil depletion also inhibited acute seizure induction and chronic spontaneous recurrent seizures. Blood-brain barrier (BBB) leakage, which is known to enhance neuronal excitability, was induced by acute seizure activity but was prevented by blockade of leukocyte-vascular adhesion, suggesting a pathogenetic link between leukocyte-vascular interactions, BBB damage and seizure generation. Consistent with the potential leukocyte involvement in epilepsy in humans, leukocytes were more abundant in brains of individuals with epilepsy than in controls. Our results suggest leukocyte-endothelial interaction as a potential target for the prevention and treatment of epilepsy.
- Find related publications in this database (using NLM MeSH Indexing)
-
Animals -
-
Cell Adhesion -
-
Cell Adhesion Molecules - deficiency
-
Cell Adhesion Molecules - genetics
-
Cell Adhesion Molecules - metabolism
-
Electroencephalography -
-
Endothelial Cells - cytology
-
Endothelial Cells - metabolism
-
Epilepsy - genetics
-
Epilepsy - metabolism
-
Epilepsy - pathology
-
Leukocytes - cytology
-
Leukocytes - metabolism
-
Male -
-
Mice -
-
Mice, Inbred C57BL -
-
Mice, Knockout -