Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Heidt, T; Reiss, S; Krafft, AJ; Özen, AC; Lottner, T; Hehrlein, C; Galmbacher, R; Kayser, G; Hilgendorf, I; Stachon, P; Wolf, D; Zirlik, A; Düring, K; Zehender, M; Meckel, S; von Elverfeldt, D; Bode, C; Bock, M; von Zur Mühlen, C.
Real-time magnetic resonance imaging - guided coronary intervention in a porcine model.
Sci Rep. 2019; 9(1): 8663-8663. Doi: 10.1038/s41598-019-45154-7 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Co-Autor*innen der Med Uni Graz
Zirlik Andreas
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
X-ray fluoroscopy is the gold standard for coronary diagnostics and intervention. Magnetic resonance imaging is a radiation-free alternative to x-ray with excellent soft tissue contrast in arbitrary slice orientation. Here, we assessed real-time MRI-guided coronary interventions from femoral access using newly designed MRI technologies. Six Goettingen minipigs were used to investigate coronary intervention using real-time MRI. Catheters were custom-designed and equipped with an active receive tip-coil to improve visibility and navigation capabilities. Using modified standard clinical 5 F catheters, intubation of the left coronary ostium was successful in all animals. For the purpose of MR-guided coronary interventions, a custom-designed 8 F catheter was used. In spite of the large catheter size, and therefore limited steerability, intubation of the left coronary ostium was successful in 3 of 6 animals within seconds. Thereafter, real-time guided implantation of a non-metallic vascular scaffold into coronary arteries was possible. This study demonstrates that real-time MRI-guided coronary catheterization and intervention via femoral access is possible without the use of any contrast agents or radiation, including placement of non-metallic vascular scaffolds into coronary arteries. Further development, especially in catheter and guidewire technology, will be required to drive forward routine MR-guided coronary interventions as an alternative to x-ray fluoroscopy.

© Med Uni Graz Impressum