Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Vera Ramos, JA; Kreuzthaler, M; Schulz, S.
Supervised ICD Code Assignment to Short Clinical Problem List Entries.
Stud Health Technol Inform. 2019; 258(Suppl 3):184-188
PubMed

 

Führende Autor*innen der Med Uni Graz
Vera Ramos Jose Antonio
Co-Autor*innen der Med Uni Graz
Kreuzthaler Markus Eduard
Schulz Stefan
Altmetrics:

Dimensions Citations:

Plum Analytics:
Abstract:
Clinical information systems contain free-text entries in different contexts to be used in a variety of application scenarios. In this study we investigate to what extent diagnosis codes using the disease classification system ICD-10 can be automatically post-assigned to patient-based short problem list entries, (50 characters maximum). Classifiers using random forest and Adaboost performed best with an F-measure of 0.87 and 0.85 running against an unbalanced data set, and an F-measure of 0.88 and 0.94 using a balanced data set, respectively.
Find related publications in this database (using NLM MeSH Indexing)
Automation -
Humans -
International Classification of Diseases -

© Med Uni Graz Impressum