Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Biasin, V; Wygrecka, M; Bärnthaler, T; Jandl, K; Jain, PP; Bálint, Z; Kovacs, G; Leitinger, G; Kolb-Lenz, D; Kornmueller, K; Peters, F; Sinn, K; Klepetko, W; Heinemann, A; Olschewski, A; Becker-Pauly, C; Kwapiszewska, G.
Docking of Meprin α to Heparan Sulphate Protects the Endothelium from Inflammatory Cell Extravasation.
Thromb Haemost. 2018; 118(10):1790-1802 Doi: 10.1055/s-0038-1670657
Web of Science PubMed FullText FullText_MUG

 

Führende Autor*innen der Med Uni Graz
Biasin Valentina
Kwapiszewska-Marsh Grazyna
Co-Autor*innen der Med Uni Graz
Balint Zoltan
Bärnthaler Thomas
Heinemann Akos
Jandl Katharina
Kolb Dagmar
Kornmüller Karin
Kovacs Gabor
Leitinger Gerd
Olschewski Andrea
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
Pulmonary arterial hypertension (PAH) is a rare disease characterized by increased pulmonary pressure and vascular remodelling as a consequence of smooth muscle cell proliferation, endothelial cell dysfunction and inflammatory infiltrates. Meprin α is a metalloproteinase whose substrates include adhesion and cell-cell contact molecules involved in the process of immune cell extravasation. In this study, we aimed to unravel the role of meprin α in PAH-induced vascular remodelling. Our results showed that meprin α was present in the apical membrane of endothelial cells in the lungs and pulmonary arteries of donors and idiopathic PAH (IPAH) patients. Elevated circulating meprin α levels were detected in the plasma of IPAH patients. In vitro binding assays and electron microscopy confirmed binding of meprin α to the glycocalyx of human pulmonary artery endothelial cells (hPAECs). Enzymatic and genetic approaches identified heparan sulphate (HS) as an important determinant of the meprin α binding capacity to hPAEC. Meprin α treatment protected from excessive neutrophil infiltration and the protective effect observed in the presence of neutrophils was partially reversed by removal of HS from hPAEC. Importantly, HS levels in pulmonary arteries were decreased in IPAH patients and binding of meprin α to HS was impaired in IPAH hPAEC. In summary, our results suggest a role of HS in docking meprin α to the endothelium and thus in the modulation of inflammatory cell extravasation. In IPAH, the decreased endothelial HS results in the reduction of meprin α binding which might contribute to enhanced inflammatory cell extravasation and potentially to pathological vascular remodelling. Georg Thieme Verlag KG Stuttgart · New York.
Find related publications in this database (using NLM MeSH Indexing)
Animals -
Cells, Cultured -
Endothelium, Vascular - metabolism
Endothelium, Vascular - pathology
Heparitin Sulfate - metabolism
Humans -
Hypertension, Pulmonary - immunology
Immune System Diseases -
Inflammation - immunology
Leukocyte Disorders -
Lung - metabolism
Lung - pathology
Male -
Metalloendopeptidases - genetics
Metalloendopeptidases - metabolism
Mice -
Mice, Inbred C57BL -
Mice, Knockout -
Protein Binding -
Pulmonary Artery - pathology
Vascular Remodeling -

Find related publications in this database (Keywords)
meprin alpha
endothelial cells
inflammatory cells
extravasation
© Med Uni Graz Impressum