Selected Publication:
SHR
Neuro
Cancer
Cardio
Lipid
Metab
Microb
Tobola, F; Lelimousin, M; Varrot, A; Gillon, E; Darnhofer, B; Blixt, O; Birner-Gruenberger, R; Imberty, A; Wiltschi, B.
Effect of Noncanonical Amino Acids on Protein-Carbohydrate Interactions: Structure, Dynamics, and Carbohydrate Affinity of a Lectin Engineered with Fluorinated Tryptophan Analogs.
ACS Chem Biol. 2018; 13(8):2211-2219
Doi: 10.1021/acschembio.8b00377
[OPEN ACCESS]
Web of Science
PubMed
FullText
FullText_MUG
- Co-authors Med Uni Graz
-
Birner-Grünberger Ruth
-
Darnhofer Barbara
- Altmetrics:
- Dimensions Citations:
- Plum Analytics:
- Scite (citation analytics):
- Abstract:
-
Protein-carbohydrate interactions play crucial roles in biology. Understanding and modifying these interactions is of major interest for fighting many diseases. We took a synthetic biology approach and incorporated noncanonical amino acids into a bacterial lectin to modulate its interactions with carbohydrates. We focused on tryptophan, which is prevalent in carbohydrate binding sites. The exchange of the tryptophan residues with analogs fluorinated at different positions resulted in three distinctly fluorinated variants of the lectin from Ralstonia solanacearum. We observed differences in stability and affinity toward fucosylated glycans and rationalized them by X-ray and modeling studies. While fluorination decreased the aromaticity of the indole ring and, therefore, the strength of carbohydrate-aromatic interactions, additional weak hydrogen bonds were formed between fluorine and the ligand hydroxyl groups. Our approach opens new possibilities to engineer carbohydrate receptors.