Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Jungmann, PM; Baum, T; Schaeffeler, C; Sauerschnig, M; Brucker, PU; Mann, A; Ganter, C; Bieri, O; Rummeny, EJ; Woertler, K; Bauer, JS.
3.0T MR imaging of the ankle: Axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging-A preliminary study.
Eur J Radiol. 2015; 84(8): 1546-1554. Doi: 10.1016/j.ejrad.2015.04.023
Web of Science PubMed FullText FullText_MUG

 

Co-Autor*innen der Med Uni Graz
Sauerschnig Martin
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
To determine the impact of axial traction during high resolution 3.0T MR imaging of the ankle on morphological assessment of articular cartilage and quantitative cartilage imaging parameters. MR images of n=25 asymptomatic ankles were acquired with and without axial traction (6kg). Coronal and sagittal T1-weighted (w) turbo spin echo (TSE) sequences with a driven equilibrium pulse and sagittal fat-saturated intermediate-w (IMfs) TSE sequences were acquired for morphological evaluation on a four-point scale (1=best, 4=worst). For quantitative assessment of cartilage degradation segmentation was performed on 2D multislice-multiecho (MSME) SE T2, steady-state free-precession (SSFP; n=8) T2 and SSFP diffusion-weighted imaging (DWI; n=8) images. Wilcoxon-tests and paired t-tests were used for statistical analysis. With axial traction, joint space width increased significantly and delineation of cartilage surfaces was rated superior (P<0.05). Cartilage surfaces were best visualized on coronal T1-w images (P<0.05). Differences for cartilage matrix evaluation were smaller. Subchondral bone evaluation, motion artifacts and image quality were not significantly different between the acquisition methods (P>0.05). T2 values were lower at the tibia than at the talus (P<0.001). Reproducibility was better for images with axial traction. Axial traction increased the joint space width, allowed for better visualization of cartilage surfaces and improved compartment discrimination and reproducibility of quantitative cartilage parameters. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Find related publications in this database (using NLM MeSH Indexing)
Adult -
Ankle Joint - anatomy & histology
Cartilage, Articular - anatomy & histology
Diffusion Magnetic Resonance Imaging -
Feasibility Studies -
Female -
Humans -
Magnetic Resonance Imaging - methods
Male -
Reference Values -
Reproducibility of Results -
Young Adult -

Find related publications in this database (Keywords)
Ankle
Cartilage
Magnetic resonance imaging
Traction
© Med Uni Graz Impressum