Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Fröhlich, E.
Toxicity of orally inhaled drug formulations at the alveolar barrier: parameters for initial biological screening.
Drug Deliv. 2017; 24(1):891-905 Doi: 10.1080/10717544.2017.1333172 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Führende Autor*innen der Med Uni Graz
Fröhlich Eleonore
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
Oral delivery is the most common mode of systemic drug application. Inhalation is mainly used for local therapy of lung diseases but may also be a promising route for systemic delivery of drugs that have poor oral bioavailability. The thin alveolar barrier enables fast and efficient uptake of many molecules and could deliver small molecules and proteins, which are susceptible to degradation and show poor absorption by oral application. The low rate of biotransformation and proteolytic degradation increases bioavailability of drugs but accumulation of not absorbed material may impair normal lung function. This limitation is more relevant for compounds that should be systematically active because higher doses have to be applied to the lung. The review describes processes that determine absorption of orally inhaled formulations, namely dissolution in the lung lining fluid and uptake and degradation by alveolar epithelial cells and macrophages. Dissolution testing in simulated lung fluid, screening for cytotoxicity and pro-inflammatory action in respiratory cells and study of macrophage morphology, and phagocytosis can help to identify adverse effects of pulmonary formulations.
Find related publications in this database (using NLM MeSH Indexing)
Administration, Inhalation -
Biological Availability -
Chemistry, Pharmaceutical -
Drug Compounding -
Lung -
Macrophages, Alveolar -

Find related publications in this database (Keywords)
Oral inhalation
lung physiology
toxicity
phospholipidosis
alveolar macrophages
dissolution
© Med Uni Graz Impressum