Gewählte Publikation:
SHR
Neuro
Krebs
Kardio
Lipid
Stoffw
Microb
Petz, G; Karpowicz, M; Furschuss, H; Auinger, A; Stritesky, V; Holzinger, A.
Computational approaches for mining user's opinions on the Web 2.0 (Reprinted from Information Processing and Management, vol 50, pg 899-908, 2014)
INFORM PROCESS MANAG. 2015; 51(4): 510-519.
Doi: 10.1016/j.ipm.2014.07.011
Web of Science
FullText
FullText_MUG
- Co-Autor*innen der Med Uni Graz
-
Holzinger Andreas
- Altmetrics:
- Dimensions Citations:
- Plum Analytics:
- Scite (citation analytics):
- Abstract:
- The emerging research area of opinion mining deals with computational methods in order to find, extract and systematically analyze people's opinions, attitudes and emotions towards certain topics. While providing interesting market research information, the user generated content existing on the Web 2.0 presents numerous challenges regarding systematic analysis, the differences and unique characteristics of the various social media channels being one of them. This article reports on the determination of such particularities, and deduces their impact on text preprocessing and opinion mining algorithms. The effectiveness of different algorithms is evaluated in order to determine their applicability to the various social media channels. Our research shows that text preprocessing algorithms are mandatory for mining opinions on the Web 2.0 and that part of these algorithms are sensitive to errors and mistakes contained in the user generated content. (C) 2014 Elsevier Ltd. All rights reserved.
- Find related publications in this database (Keywords)
-
Opinion mining
-
Noisy text
-
Text preprocessing
-
User generated content
-
Data mining