Medizinische Universität Graz - Research portal

Logo MUG Resarch Portal

Selected Publication:

SHR Neuro Cancer Cardio Lipid Metab Microb

Tschakert, G; Kroepfl, J; Mueller, A; Moser, O; Groeschl, W; Hofmann, P.
How to regulate the acute physiological response to "aerobic" high-intensity interval exercise.
J Sports Sci Med. 2015; 14(1):29-36 [OPEN ACCESS]
Web of Science PubMed PUBMED Central

 

Leading authors Med Uni Graz
Hofmann Peter
Co-authors Med Uni Graz
Kröpfl Julia
Altmetrics:

Dimensions Citations:

Plum Analytics:
Abstract:
The acute physiological processes during "aerobic" high-intensity interval exercise (HIIE) and their regulation are inadequately studied. The main goal of this study was to investigate the acute metabolic and cardiorespiratory response to long and short HIIE compared to continuous exercise (CE) as well as its regulation and predictability. Six healthy well-trained sport students (5 males, 1 female; age: 25.7 ± 3.1 years; height: 1.80 ± 0.04 m; weight: 76.7 ± 6.4 kg; VO2max: 4.33 ± 0.7 l·min(-1)) performed a maximal incremental exercise test (IET) and subsequently three different exercise sessions matched for mean load (Pmean) and exercise duration (28 min): 1) long HIIE with submaximal peak workloads (Ppeak = power output at 95 % of maximum heart rate), peak workload durations (tpeak) of 4 min, and recovery durations (trec) of 3 min, 2) short HIIE with Ppeak according to the maximum power output (Pmax) from IET, tpeak of 20 s, and individually calculated trec (26.7 ± 13.4 s), and 3) CE with a target workload (Ptarget) equating to Pmean of HIIE. In short HIIE, mean lactate (Lamean) (5.22 ± 1.41 mmol·l(-1)), peak La (7.14 ± 2.48 mmol·l(-1)), and peak heart rate (HRpeak) (181.00 ± 6.66 b·min(-1)) were significantly lower compared to long HIIE (Lamean: 9.83 ± 2.78 mmol·l(-1); Lapeak: 12.37 ± 4.17 mmol·l(-1), HRpeak: 187.67 ± 5.72 b·min(-1)). No significant differences in any parameters were found between short HIIE and CE despite considerably higher peak workloads in short HIIE. The acute metabolic and peak cardiorespiratory demand during "aerobic" short HIIE was significantly lower compared to long HIIE and regulable via Pmean. Consequently, short HIIE allows a consciously aimed triggering of specific and desired or required acute physiological responses. Key pointsHigh-intensity interval exercise (HIIE) with short peak workload durations (tpeak) induce a lower acute metabolic and peak cardiorespiratory response compared to intervals with long tpeak despite higher peak workload intensities (Ppeak) and identical mean load (Pmean).Short HIIE response is the same as in continuous exercise (CE) matched for Pmean.It is possible to regulate and predict the acute physiological response by means of Pmean for short HIIE but not for long HIIE.The use of fixed percentages of maximal heart rate (HRmax) for exercise intensity prescription yields heterogeneous exercise stimuli across subjects. Therefore, objective individual markers such as the first and the second lactate turn point are recommend prescribing exercise intensity not only for continuous but also for intermittent exercise.

Find related publications in this database (Keywords)
Intermittent exercise
exercise prescription
acute physiological demand
mean load
peak workload duration
© Med Uni GrazImprint