Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Probst, A; Facius, R; Wirth, R; Moissl-Eichinger, C.
Validation of a nylon-flocked-swab protocol for efficient recovery of bacterial spores from smooth and rough surfaces.
Appl Environ Microbiol. 2010; 76(15):5148-5158 Doi: 10.1128/AEM.00399-10 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Führende Autor*innen der Med Uni Graz
Moissl-Eichinger Christine
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
In order to meet planetary-protection requirements, culturable bacterial spore loads are measured representatively for the total microbial contamination of spacecraft. However, the National Aeronautics and Space Administration's (NASA's) cotton swab protocols for spore load determination have not changed for decades. To determine whether a more efficient alternative was available, a novel swab was evaluated for recovery of different Bacillus atrophaeus spore concentrations on stainless steel and other surfaces. Two protocols for the nylon-flocked swab (NFS) were validated and compared to the present NASA standard protocol. The results indicate that the novel swab protocols recover 3- to 4-fold more (45.4% and 49.0% recovery efficiency) B. atrophaeus spores than the NASA standard method (13.2%). Moreover, the nylon-flocked-swab protocols were superior in recovery efficiency for spores of seven different Bacillus species, including Bacillus anthracis Sterne (recovery efficiency, 20%). The recovery efficiencies for B. atrophaeus spores from different surfaces showed a variation from 5.9 to 62.0%, depending on the roughness of the surface analyzed. Direct inoculation of the swab resulted in a recovery rate of about 80%, consistent with the results of scanning electron micrographs that allowed detailed comparisons of the two swab types. The results of this investigation will significantly contribute to the cleanliness control of future life detection missions and will provide significant improvement in detection of B. anthracis contamination for law enforcement and security efforts.
Find related publications in this database (using NLM MeSH Indexing)
Bacillus - isolation & purification
Bacteriological Techniques - methods
Environmental Microbiology -
Nylons -
Sensitivity and Specificity -
Spacecraft -
Spores, Bacterial - isolation & purification
Spores, Bacterial -
United States National Aeronautics and Space Administration -

© Med Uni Graz Impressum