Selected Publication:
SHR
Neuro
Cancer
Cardio
Lipid
Metab
Microb
Hofer, D; Münzker, J; Schwetz, V; Ulbing, M; Hutz, K; Stiegler, P; Zigeuner, R; Pieber, TR; Müller, H; Obermayer-Pietsch, B.
Testicular synthesis and vitamin D action.
J Clin Endocrinol Metab. 2014; 99(10):3766-3773
Doi: 10.1210/jc.2014-1690
[OPEN ACCESS]
Web of Science
PubMed
FullText
FullText_MUG
- Leading authors Med Uni Graz
-
Obermayer-Pietsch Barbara
-
Sudy Daniela
- Co-authors Med Uni Graz
-
Hutz Karla
-
Müller Helmut
-
Münzker Julia
-
Pieber Thomas
-
Stiegler Philipp
-
Theiler-Schwetz Verena
-
Ulbing Matthias
-
Zigeuner Richard
- Altmetrics:
- Dimensions Citations:
- Plum Analytics:
- Scite (citation analytics):
- Abstract:
-
The vitamin D system has pleiotropic effects not only in bone metabolism. Its role in testicular steroidogenesis is new and deserves intensive research.
We hypothesize that vitamin D, especially 1,25 dihydroxyvitamin D3 [1,25(OH)2D3 (calcitriol)] induces male steroidogenesis and intend to identify its impact on genes and pathways in testicular androgen regulation.
Human adult primary testicular cells were isolated, treated with 1,25(OH)2D3, and their gene expression levels profiled by microarray analysis. Highly regulated genes were confirmed by real-time quantitative PCR. In addition, the effects of 1,25(OH)2D3 in combination with LH and IGF-I on the gene expression level of androgens were assessed. T levels in the culture media were determined by a high-resolution ELISA. The expression of vitamin D receptor was confirmed at baseline and after 1,25(OH)2D3 stimulation using immunocytochemistry.
Microarrays depicted 63 genes significantly regulated by 1,25(OH)2D3, including genes related to male androgen and vitamin D metabolism, mainly triggered by the vitamin D receptor/retinoid X receptor activation. 1,25(OH)2D3 led to significant changes in the expression profiles of reproductive genes and significantly increased T synthesis in human testicular cell cultures.
Data from our human primary testicular cell culture model suggest that vitamin D plays a major role in male steroidogenesis in vitro.
- Find related publications in this database (using NLM MeSH Indexing)
-
Adult -
-
Aged -
-
Aged, 80 and over -
-
Androgens - genetics
-
Androgens - metabolism
-
Calcitriol - pharmacology
-
Humans -
-
Insulin-Like Growth Factor I - pharmacology
-
Luteinizing Hormone - pharmacology
-
Male -
-
Middle Aged -
-
Oligonucleotide Array Sequence Analysis -
-
Primary Cell Culture -
-
Receptors, Calcitriol - genetics
-
Receptors, Calcitriol - metabolism
-
Testis - cytology
-
Testis - physiology
-
Testosterone - biosynthesis
-
Testosterone - genetics
-
Transcriptome - drug effects
-
Up-Regulation - drug effects
-
Up-Regulation - physiology
-
Vitamins - pharmacology