Gewählte Publikation:
SHR
Neuro
Krebs
Kardio
Lipid
Stoffw
Microb
Eriksson, TSE; Prassl, AJ; Plank, G; Holzapfel, GA; .
Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction.
MATH MECH SOLIDS. 2013; 18(6): 592-606.
Doi: 10.1177/1081286513485779
Web of Science
FullText
FullText_MUG
- Führende Autor*innen der Med Uni Graz
-
Eriksson Thomas
- Co-Autor*innen der Med Uni Graz
-
Plank Gernot
-
Prassl Anton
- Altmetrics:
- Dimensions Citations:
- Plum Analytics:
- Scite (citation analytics):
- Abstract:
- At any point in space the material properties of the myocardium are characterized as orthotropic, that is, there are three mutually orthogonal axes along which both electrical and mechanical parameters differ. To investigate the role of spatial structural heterogeneity in an orthotropic material, electro-mechanically coupled models of the left ventricle (LV) were used. The implemented models differed in their arrangement of fibers and sheets in the myocardium, but were identical otherwise: (i) a generic homogeneous model, where a rule-based method was applied to assign fiber and sheet orientations, and (ii) a heterogeneous model, where the assignment of the orthotropic tissue structure was based on experimentally obtained fiber/sheet orientations. While both models resulted in pressure-volume loops and metrics of global mechanical function that were qualitatively and quantitatively similar and matched well with experimental data, the predicted deformations were strikingly different between these models, particularly with regard to torsion. Thus, the simulation results strongly suggest that heterogeneous structure properties play an important nonnegligible role in LV mechanics and, consequently, should be accounted for in computational models.
- Find related publications in this database (Keywords)
-
Electro-mechanics
-
mono-domain
-
weak coupling
-
PV loops