Medizinische Universität Graz - Research portal

Logo MUG Resarch Portal

Selected Publication:

SHR Neuro Cancer Cardio Lipid Metab Microb

Bauer, MA; Carmona-Gutiérrez, D; Ruckenstuhl, C; Reisenbichler, A; Megalou, EV; Eisenberg, T; Magnes, C; Jungwirth, H; Sinner, FM; Pieber, TR; Fröhlich, KU; Kroemer, G; Tavernarakis, N; Madeo, F.
Spermidine promotes mating and fertilization efficiency in model organisms.
Cell Cycle. 2013; 12(2):346-352 Doi: 10.4161/cc.23199 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Co-authors Med Uni Graz
Pieber Thomas
Sinner Frank Michael
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
Spermidine is a naturally occurring polyamine involved in multiple biological processes, including DNA metabolism, autophagy and aging. Like other polyamines, spermidine is also indispensable for successful reproduction at several stages. However, a direct influence on the actual fertilization process, i.e., the fusion of an oocyte with a spermatocyte, remains uncertain. To explore this possibility, we established the mating process in the yeast Saccharomyces cerevisiae as a model for fertilization in higher eukaryotes. During human fertilization, the sperm capacitates and the acrosome reaction is necessary for penetration of the oocyte. Similarly, sexually active yeasts form a protrusion called "shmoo" as a prerequisite for mating. In this study, we demonstrate that pheromone-induced shmoo formation requires spermidine. In addition, we show that spermidine is essential for mating in yeast as well as for egg fertilization in the nematode Caenorhabditis elegans. In both cases, this occurs independently from autophagy. In synthesis, we identify spermidine as an important mating component in unicellular and multicellular model organisms, supporting an unprecedented evolutionary conservation of the mechanisms governing fertilization-related cellular fusion.
Find related publications in this database (using NLM MeSH Indexing)
Animals -
Autophagy - physiology
Caenorhabditis elegans -
Cell Surface Extensions - drug effects
Cell Surface Extensions - physiology
Chromatography, Liquid -
Fertilization - physiology
Microscopy, Fluorescence -
Pheromones - pharmacology
Polyamines - metabolism
Reproduction - physiology
Saccharomyces cerevisiae -
Spermidine - physiology
Tandem Mass Spectrometry -

Find related publications in this database (Keywords)
Caenorhabditis elegans
spermidine
mating
fertilization
Saccharomyces cerevisiae
shmoo
autophagy
sexual reproduction
© Med Uni GrazImprint