Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Guyot, JP; Sigrist, A; Pelizzone, M; Feigl, GC; Kos, MI.
Eye Movements in Response to Electrical Stimulation of the Lateral and Superior Ampullary Nerves
ANN OTOL RHINOL LARYNGOL. 2011; 120(2): 81-87. Doi: 10.1177/000348941112000202 [OPEN ACCESS]
Web of Science FullText FullText_MUG

 

Co-Autor*innen der Med Uni Graz
Feigl Georg
Altmetrics:

Dimensions Citations:
Plum Analytics:


Scite (citation analytics):

Abstract:
Objectives: Recently, we demonstrated that it was possible to elicit vertical eye movements in response to electrical stimulation of the posterior ampullary nerve. In order to develop a vestibular implant, a second site of stimulation is required to encode the horizontal movements. Methods: Three patients with disabling Meniere's disease were included in the study. Before a labyrinthectomy via a standard transcanal approach was performed, their lateral and anterior ampullary nerves were surgically exposed under local anesthesia through a procedure we recently developed. The attic was opened, the incus and malleus head were removed, and a small well was drilled above the horizontal portion of the facial nerve canal to place an electrode. This electrode was used to deliver balanced biphasic trains of electrical pulses. Results: The electrical stimuli elicited mainly horizontal nystagmus without simultaneous stimulation of the facial nerve. Conclusions: It is possible to stimulate electrically the lateral and superior ampullary nerves without simultaneous stimulation of the facial nerve. Because the nerves run close to each other, electrical stimulation provoked eye movements that were not purely horizontal, but also had some vertical components. Nevertheless, this site can be used to encode horizontal movements, because central adaptation may correct unnatural afferent vestibular cues delivered by a prosthetic sensor. The range of stimulus intensities that produced a response was broad enough for us to envision the possibility of encoding eye movements of various speeds.

Find related publications in this database (Keywords)
imbalance
implant
prosthesis
rehabilitation
vestibule
© Med Uni Graz Impressum