Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Hahn, U; Daumke, P; Schulz, S; Marko, K.
Cross-language mining for acronyms and their completions from the web
In: Carbonell, JG, Motoda, H, Hoffmann, A. editors(s). DISCOVERY SCIENCE, PROCEEDINGS; LECTURE NOTES IN COMPUTER SCIENCE3735: 113-123. (ISBN: 3-540-29230-6) Doi: 10.1007/11563983_11
Web of Science FullText FullText_MUG

 

Co-Autor*innen der Med Uni Graz
Schulz Stefan
Altmetrics:

Dimensions Citations:
Plum Analytics:


Scite (citation analytics):

Abstract:
We propose a method that aligns biomedical acronyms and their longform definitions across different languages. We use a freely available search and extraction tool by which abbreviations, together with their fully expanded forms, are massively mined from the Web. In a subsequent step, language-specific variants, synonyms, and translations of,the extracted acronym definitions are normalized by referring to a language-independent, shared semantic interlingua.

© Med Uni Graz Impressum