Gewählte Publikation:
SHR
Neuro
Krebs
Kardio
Lipid
Stoffw
Microb
Teller, M; Gopp, U; Neumann, HG; Kühn, KD.
Release of gentamicin from bone regenerative materials: an in vitro study.
J Biomed Mater Res B Appl Biomater. 2007; 81(1):23-29
Doi: 10.1002/jbm.b.30631
Web of Science
PubMed
FullText
FullText_MUG
- Co-Autor*innen der Med Uni Graz
-
Kühn Klaus-Dieter
- Altmetrics:
- Dimensions Citations:
- Plum Analytics:
- Scite (citation analytics):
- Abstract:
- Antibiotic loading of bone regenerative materials is a promising way to protect augmentation procedures from infection during the resorption phase of bone substitutes. Especially in the early stage of implantation, it should protect the grafted site against microbiological pathogens. The present study reports the release kinetics of gentamicin after loading from two synthetic bone filling materials. The first, BONITmatrix, is a biphasic calcium phosphate silica composite obtained by the sol-gel route consisting of 13% silicon dioxide (w/w) and calcium phosphates (hydroxyapatite/beta-tricalcium phosphate 60/40 w/w). The second, Synthacer, is a sintered hydroxyapatite ceramic. Gentamicin was loaded by dipping and by vacuum coating. Release kinetics of the loaded Gentamicin was investigated by fluorescence polarization immunoassay and by staphylococcus aureus assay. By dipping, loading failed for Synthacer, and it was 12.7 mg gentamicin per gram bone substitute for BONITmatrix. By vacuum coating, loading was 11.3 mg gentamicin per gram bone substitute for Synthacer and 7.4 mg gentamicin per gram bone substitute for BONITmatrix. Distinct release kinetics were measured. For Synthacer, a high initial release was followed by a lower protracted release level up to 28 days. For BONITmatrix release was continuous over the investigated 70-day period. The present data suggest that the porosity properties at the nano- and microscopic levels, or the composition are responsible for antibiotic loading and subsequent release.
- Find related publications in this database (using NLM MeSH Indexing)
-
Anti-Bacterial Agents - analysis Anti-Bacterial Agents - metabolism
-
Bone Substitutes - chemistry Bone Substitutes - metabolism
-
Calcium Phosphates - chemistry Calcium Phosphates - metabolism
-
Coated Materials, Biocompatible - chemistry Coated Materials, Biocompatible - metabolism
-
Drug Delivery Systems -
-
Durapatite - chemistry Durapatite - metabolism
-
Gentamicins - analysis Gentamicins - metabolism
-
Kinetics -
-
Silicon Dioxide - chemistry Silicon Dioxide - metabolism
- Find related publications in this database (Keywords)
-
bone regenerative material
-
antibiotics
-
calcium phosphate
-
silica
-
hydroxyapatite
-
release kinetics