Medizinische Universität Graz - Research portal

Selected Publication:

SHR Neuro Cancer Cardio Lipid Metab Microb

Kräuter, C; Reiter, U; Kovacs, G; Reiter, C; Masana, M; Olschewski, H; Fuchsjäger, M; Stollberger, R; Reiter, G.
Automated vortical blood flow-based estimation of mean pulmonary arterial pressure from 4D flow MRI.
Magn Reson Imaging. 2022; 88: 132-141. Doi: 10.1016/j.mri.2022.02.007
Web of Science PubMed FullText FullText_MUG

 

Leading authors Med Uni Graz
Kräuter Corina
Reiter Ursula
Co-authors Med Uni Graz
Fuchsjäger Michael
Kovacs Gabor
Olschewski Horst
Reiter Clemens
Reiter Gert
Stollberger Rudolf
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
PURPOSE: Elevated mean pulmonary arterial pressure (mPAP), or pulmonary hypertension (PH), is associated with vortical blood flow along the main pulmonary artery. We present and validate a method for automated detection and tracking of the PH-related vortex from magnetic resonance 4D flow data that allows estimation of mPAP. METHODS: The proposed method detects the presence of a PH-related vortex in the main pulmonary artery based on geometrical properties of swirling streamlines and estimates mPAP from the PH-related vortex duration (tvortex) using a previously established model. 4D flow data of 32 subjects (19/13 with/without PH) who underwent right heart catheterization (RHC) for mPAP measurement and diagnosis of PH (mPAP >20 mmHg) were used to compare visual and automated PH-related vortex detection and to validate estimated mPAP against RHC-derived results. RESULTS: Visually and automatically determined tvortex values correlated strongly (r = 0.98); they yielded no bias, and the standard deviation of differences between them was small (5.9% of the cardiac interval). mPAP estimates from visual and automated analyses both allowed diagnosis of PH with an area under the curve of 1.00 [0.89,1.00]. For subjects with PH, neither visually nor automatically estimated mPAP differed from mPAP measured by RHC, while the standard deviation between estimated and invasively measured mPAP was lower with visual estimation (3.1 mmHg vs. 5.3 mmHg). CONCLUSION: An automated method for PH-related vortex detection and tracking from magnetic resonance 4D flow data was introduced, which demonstrated very good agreement with visual analysis and accurate estimation of elevated mPAP.

Find related publications in this database (Keywords)
4D flow
Blood flow
Pulmonary artery
Pulmonary arterial pressure
Pulmonary hypertension
Vortex detection
© Med Uni GrazImprint