Medizinische Universität Graz - Research portal
Selected Publication:
SHR
Neuro
Cancer
Cardio
Lipid
Metab
Microb
Merz, J; Nettesheim, A; von, Garlen, S; Albrecht, P; Saller, BS; Engelmann, J; Hertle, L; Schäfer, I; Dimanski, D; König, S; Karnbrock, L; Bulatova, K; Peikert, A; Hoppe, N; Hilgendorf, I; von, Zur, Mühlen, C; Wolf, D; Groß, O; Bode, C; Zirlik, A; Stachon, P.
Pro- and anti-inflammatory macrophages express a sub-type specific purinergic receptor profile.
Purinergic Signal. 2021; 17(3):481-492
Doi: 10.1007/s11302-021-09798-3
[OPEN ACCESS]
Web of Science
PubMed
FullText
FullText_MUG
- Co-authors Med Uni Graz
-
Peikert Alexander
-
Zirlik Andreas
- Altmetrics:
- Dimensions Citations:
- Plum Analytics:
- Scite (citation analytics):
- Abstract:
- Extracellular nucleotides act as danger signals that orchestrate inflammation by purinergic receptor activation. The expression pattern of different purinergic receptors may correlate with a pro- or anti-inflammatory phenotype. Macrophages function as pro-inflammatory M1 macrophages (M1) or anti-inflammatory M2 macrophages (M2). The present study found that murine bone marrow-derived macrophages express a unique purinergic receptor profile during in vitro polarization. As assessed by real-time polymerase chain reaction (PCR), Gαs-coupled P1 receptors A2A and A2B are upregulated in M1 and M2 compared to M0, but A2A 15 times higher in M1. The ionotropic P2 receptor P2X5 is selectively upregulated in M1- and M2-polarized macrophages. P2X7 is temporarily expressed in M1 macrophages. Metabotropic P2Y receptors showed a distinct expression profile in M1 and M2-polarized macrophages: Gαq coupled P2Y1 and P2Y6 are exclusively upregulated in M2, whereas Gαi P2Y13 and P2Y14 are overexpressed in M1. This consequently leads to functional differences between M1 and M2 in response to adenosine di-phosphate stimulation (ADP): In contrast to M1, M2 showed increased cytoplasmatic calcium after ADP stimulation. In the present study we show that bone marrow-derived macrophages express a unique repertoire of purinergic receptors. We show for the first time that the repertoire of purinergic receptors is highly flexible and quickly adapts upon pro- and anti-inflammatory macrophage differentiation with functional consequences to nucleotide stimulation.
- Find related publications in this database (using NLM MeSH Indexing)
-
Animals - administration & dosage
-
Cell Polarity - physiology
-
Cells, Cultured - administration & dosage
-
Inflammation Mediators - metabolism
-
Macrophages - metabolism
-
Mice - administration & dosage
-
Receptors, Purinergic - biosynthesis, genetics
-
Transcriptome - physiology
- Find related publications in this database (Keywords)
-
Macrophages
-
Polarization
-
Purinergic receptor
-
Inflammation